We study the effects of vertical sinusoidal vibrations on a liquid droplet with a low surface tension (ethanol) deposited on a solid substrate. In a precise range of amplitudes and frequencies, the drop exhibits a dramatic worm-like shape instability with a strong symmetry breaking, comparable to the one observed by Pucci et al. (Phys. Rev. Lett., 106 (2011) 024503) on a vibrated floating lens. However, the geometry of our system is much simpler since it does not involve the oscillation and deformation of a liquid-liquid-air contact line. We show that the Faraday waves appearing on the surface of the droplet control its shape and we draw a systematic phase diagram of the instability. A simple theoretical model allows us to derive a relation between the elongation of the droplet and the amplitude of the Faraday wave, in good agreement with measurements of both quantities.
Home > PUBLICATIONS > Highlights > Worm-like instability of a vibrated sessile drop